367 research outputs found

    Sum-rate Maximizing in Downlink Massive MIMO Systems with Circuit Power Consumption

    Full text link
    The downlink of a single cell base station (BS) equipped with large-scale multiple-input multiple-output (MIMO) system is investigated in this paper. As the number of antennas at the base station becomes large, the power consumed at the RF chains cannot be anymore neglected. So, a circuit power consumption model is introduced in this work. It involves that the maximal sum-rate is not obtained when activating all the available RF chains. Hence, the aim of this work is to find the optimal number of activated RF chains that maximizes the sum-rate. Computing the optimal number of activated RF chains must be accompanied by an adequate antenna selection strategy. First, we derive analytically the optimal number of RF chains to be activated so that the average sum-rate is maximized under received equal power. Then, we propose an efficient greedy algorithm to select the sub-optimal set of RF chains to be activated with regards to the system sum-rate. It allows finding the balance between the power consumed at the RF chains and the transmitted power. The performance of the proposed algorithm is compared with the optimal performance given by brute force search (BFS) antenna selection. Simulations allow to compare the performance given by greedy, optimal and random antenna selection algorithms.Comment: IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2015

    Energy-aware resource allocation in next generation wireless networks : application in large-scale MIMO Systems

    Get PDF
    In this thesis, we investigate the resource allocation problem for wireless networks that incorporate large-scale multiple-input multiple-output (MIMO) systems. These systems are considered as key technologies for future 5G wireless networks and are based on using few hundreds of antennas simultaneously to serve tens of users in the same time-frequency resource. The gains obtained by large-scale MIMO systems cannot be fully exploited without adequate resource allocation strategies. Hence, the aim of this thesis is to develop energy-aware resource allocation solutions for large-scale MIMO systems that take into consideration network power cost. Firstly, this thesis investigates the downlink of a base station equipped with large-scale MIMO system while taking into account a non-negligible transmit circuit power consumption. This consumption involves that activating all RF chains does not always necessarily achieve the maximum sum-rate. Thus, we derive the optimal number of activated RF chains. In addition, efficient antenna selection, user scheduling and power allocation algorithms in term of instantaneous sum-rate are proposed and compared. Also, fairness is investigated by considering equal receive power among users. Secondly, this thesis investigates a large-scale MIMO system that incorporates energy harvesting that is a promising key technology for greening future wireless networks since it reduces network operation costs and carbon footprints. Hence, we consider distributed large-scale MIMO systems made up of a set of remote radio heads (RRHs), each of which is powered by both an independent energy harvesting source and the grid. The grid energy source allows to compensate for the randomness and intermittency of the harvested energy. Optimal on-line and off-line energy management strategies are developed. In addition, on-line energy management algorithm based on energy prediction is devised. The feasibility problem is addressed by proposing an efficient link removal algorithm and for better energy efficiency, RRH on/off operation is investigated. Thirdly, wireless backhauling was proposed as an alternative solution that enable low-cost connection between the small base stations and the macro base station in heterogeneous networks (HetNets). The coexistence of massive MIMO, HetNets and wireless backhauling is a promising research direction since massive MIMO is a suitable solution to enable wireless backhauling. Thus, we propose a new transmission technique that is able to efficiently manage the interference in heterogeneous networks with massive MIMO wireless backhaul. The optimal time splitting parameter and the allocated transmit power are derived. The proposed transmission technique is shown to be more efficient in terms of transmit power consumption than the conventional reverse time division duplex with bandwidth splitting. In this thesis, we developed efficient resource allocation solutions related to system power for wireless networks that incorporate large-scale MIMO systems under different assumptions and network architectures. The results in this thesis can be expanded by investigating the research problems given at the end of the dissertation

    Channel modelling and performance analysis of V2I communication systems in blind bend scattering environments

    Get PDF
    In this paper, we derive a new geometrical blind bend scattering model for vehicle-to- infrastructure (V2I) communications. The proposed model takes into account single-bounce and double- bounce scattering stemming from fixed scatterers located on both sides of a curved street. Starting from the geometrical blind bend model, the exact expression of the angle of departure (AOD) is derived. Based on this expression, the probability density function (PDF) of the AOD and the Doppler power spectrum are determined. Analytical expressions for the channel gain and the temporal autocorrelation function (ACF) are provided under non-line-of-sight (NLOS) conditions. Additionally, we investigate the impact of the position of transmitting vehicle relatively to the receiving road-side unit on the channel statistics. Moreover, we study the performance of different digital modulations over a sum of singly and doubly scattered (SSDS) channel. Note that the proposed V2I channel model falls under the umbrella of SSDS channels since the transmitted signal undergoes a combination of single-bounce and double-bounce scattering. We study some characteristic quantities of SSDS channels and derive expressions for the average symbol error probability of several modulation schemes over SSDS channels with and without diversity combining. The validity of these analytical expressions is confirmed by computer-based simulations.Scopu

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Abstract: The production of π±, K±, and ( p )p is measured in pp collisions at √s = 13 TeV in different topological regions of the events. Particle transverse momentum (pT) spectra are measured in the “toward”, “transverse”, and “away” angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, RT = NT/〈NT〉, is used to group events according to their UE activity, where NT is the measured charged-particle multiplicity per event in the transverse region and 〈NT〉 is the mean value over all the analysed events. The first measurements of identified particle pT spectra as a function of RT in the three topological regions are reported. It is found that the yield of high transverse momentum particles relative to the RT-integrated measurement decreases with increasing RT in both the toward and the away regions, indicating that the softer UE dominates particle production as RT increases and validating that RT can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing RT. This hardening follows a mass ordering, being more significant for heavier particles. Finally, it is observed that the pT-differential particle ratios (p + p )/(π+ + π−) and (K+ + K−)/(π+ + π−) in the low UE limit (RT → 0) approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce e+e− results

    Light (anti)nuclei production in Pb-Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the production of deuterons, tritons and 3 He and their antiparticles in Pb-Pb collisions at √s NN = 5.02 TeV is presented in this article. The measurements are carried out at midrapidity (|y| < 0.5) as a function of collision centrality using the ALICE detector. The pT -integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different center-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    Get PDF
    Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at root s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p(T)) of 0.2 GeV/c and up to p(T) = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p(T) range 0.5 < p(T) < 26 GeV/c at root s(NN) = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p(T) dependence is observed in pp collisions, where the yield of high-p(T) electrons increases faster as a function of multiplicity than the one of low-p(T) electrons. The measurement in p-Pb collisions shows no p(T) dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations

    First measurement of Λc+ production down to pT=0 in pp and p-Pb collisions at sNN=5.02 TeV

    Get PDF
    The production of prompt Lambda+c baryons has been measured at midrapidity in the transverse momentum interval 0 < pT < 1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon collision √s NN = 5.02 TeV. The measurement was performed in the decay channel Lambda+c → pK0S by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The pT -integrated Lambda+c production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT -integrated nuclear modification factors R pPb and R AA of Lambda+c baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The Lambda+c /D0 baryon-to-meson yield ratio is reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions are discussed. A significant (3.7σ ) modification of the mean transverse momentum of Lambda+c baryons is seen in p–Pb collisions with respect to pp collisions, while the pT -integrated Lambda+c /D0 yield ratio was found to be consistent between the two collision systems within the uncertainties
    corecore